You are currently browsing the tag archive for the ‘university of texas’ tag.

With the demand for social workers due to grow by more than 35 percent in West Texas in the next few years, the University of Texas at El Paso will launch a Master of Social Work program in 2010 called Social Work in a Border Region. Though UT Pan American offers a program in Social Work with Hispanic Families, UTEP’s will be the first in the nation to specialize in border issues. Courses will focus on traditional social-worker problems — domestic violence, drug addiction, physical and mental health, unemployment, poverty — but in a binational context, where identity is based on culture and language rather than citizenship. Students will also receive training in how to deal with problems specific to the region, such as human trafficking and life in families which have members dwelling on both sides of the border.

“This environment requires us to adjust our curriculum to deal with these problems specifically; we need more professionals who understand these problems,” says Mark W. Lusk, UTEP professor and chair of the Department of Social Work and associate dean of the College of Health Sciences, who will direct the program. Lusk notes that in El Paso — as in other border cities from San Diego to Tucson to Brownsville — poverty rates are double and triple the national average, more people lack health insurance, salaries are much lower and the risk of health and economic insecurity much higher. “But these problems are increasingly evident elsewhere, in states such as Iowa and Georgia, where the Hispanic populations are also growing rapidly. This program will serve Texas in important ways, and we’ve been getting tremendous support for it from all over the state, but it’s being watched in other places as well.”

In The Number Cruncher, former state demographer Steve Murdoch documents the stunning growth of the Hispanic population in Texas, and explains some of its potential consequences. In Faces of the New Texas, educators from UT El Paso, UT Brownsville, UT Pan American and Texas A&M discuss why it’s essential to all of us that these new Texans have equal access to higher education.

All of a sudden, algae has become a hot topic in American society in general — and on University of Texas campuses in particular. That’s because the single-celled varieties of this aquatic life are increasingly being touted as an alternative energy source, particularly for transportation fuel. Some forms of algae convert solar energy into an oily substance (called lipids) that can be processed into a biofuel capable of running combustion engines like those in cars, trucks, even airplanes. As long as man can grow algae — in ponds, for example — he can produce more fuel directly from the sun’s energy. Thus, algae are potentially one of the simplest and cheapest sources of energy.

One beneficiary of, and asset to, this growing interest is the Culture Collection of Algae at UT Austin; with nearly 3000 strains growing in a space about the size of an average living room, it’s the largest and most diverse collection in the world. The center sells samples for $75. Until recently, according to director Jerry Brand, their customers were primarily plant and algal research scientists and students working on science projects. But with energy efficiency and “green” fuels at the center of so much current research, “Interest has exploded to the point where it’s hard to keep up with orders,” Brand says. “It’s a largely untapped resource that has only recently received a great deal of attention as a potential source of fuel. Nobody has shown yet that algae can economically produce large volumes of biofuel in a stable way.” But theoretical calculations and small-scale experiments indicate that it can, and many people are out to prove so: more than half the orders Brand now receives, from around the world, are from researchers seeking to create algae-derived biofuels. Brand figures we’re still more than five years away from producing commercial quantities.

Kyle Murray, an assistant professor of geology at UT San Antonio, believes it will happen quicker, and he wants to make the Alamo City a production center for algae-based biofuels. Murray has received funding that will enable him and his students to identify the various local algal organisms and take them to labs where their growth rate can be measured, their nutrient requirements determined and their ability to produced lipids gauged. Then a pilot program could be established whereby the most viable local organisms would be put into a pond system in south San Antonio and grown like a farm product; likewise, a photobiological reactor could be used to cultivate purchased strands of algae (such as those in Brand’s Culture Collection) that are known to produce large amounts of lipids. Murray believes San Antonio is an ideal locale for algae-farming because the area receives considerable sunlight and is relatively humid (which keeps the ponds from evaporating), while land for the ponds is relatively inexpensive there. “The city’s centrally located enough that we can send the product to Corpus Christi and Houston to have it refined,” he points out, and there are also potential customers in San Antonio, namely, the military.”

In The Future of Energy, Scott W. Tinker, director of UT Austin’s Bureau of Economic Geology, and other higher-education experts discuss the world’s impending energy crisis. In “Outliving the Oil Era,” his profile on the State of Tomorrow Web site, Tinker stresses the need for an orderly transition from oil to greener sources of energy including solar, wind and algae.

Two representatives of Texas A&M University join the University of Texas innovators profiled on the State of Tomorrow™ Web site. Chemical physicist Dudley R. Herschbach, 1986 co-winner of the Nobel Prize in chemistry, believes children are the ideal scholars because they’re naturally curious and uninhibited about experimenting; he touts programs that make science more interesting and accessible to students and the general public alike. Before President George W. Bush appointed him Secretary of Defense and President Barack Obama retained him there, Robert M. Gates was the president of A&M; worried about declining enrollment figures for math and science students even as globalization was making these studies more crucial to our economy, he advocated an education push comparable to the nation’s successful 1960s drive to put a man on the moon.

The two Aggies are in good company. Citing the extent to which science students are forced nowadays to memorize information and regurgitate answers, former president of the National Academies of Science and current editor of the journal Science Bruce Alberts recently denounced such science education techniques. Alberts called for a teaching “revolution” that would de-emphasize the need for test-driven memorization in favor of inquiry-based learning. And the University of Houston has initiated an online program allowing middle-school math and science teachers to earn a master’s degree for free. The Integrated Science, Math and Reflective Thinking (iSMART) degree is yet another higher-education program, such as the University of Texas’ UTeach, designed to create better teachers to inspire and develop the scientists, engineers and technologists of tomorrow.

Harvard’s Ash Institute for Democratic Governance and Innovation has named UT Austin’s UTeach Natural Sciences program one of the Top 50 Innovations in American Government. UTeach prevailed among some 600 applicants. Six of the 50 finalists will be honored with an Innovations in American Government Award. UTeach, a program to train K–12 math and science teachers, is recognized for the increased size of its graduating class (now up to 70 annually); a superior record of teacher performance and retention (80 percent of its graduates are still teaching after five years, 10 percent higher than the national average); and the national growth of replica programs (13 colleges and universities have received grants to start their own curricula patterned after UTeach).

Using modern learning theories and considerable hands-on classroom experience, UTeach prepares college math and science majors to become K–12 teachers as they themselves are advancing their own math and science educations. In The Best & the Brightest, UTeach creator Dr. Mary Ann Rankin, dean of the College of Natural Sciences at UT Austin, and Austin middle school science teacher and UTeach graduate Elizabeth Abernathy explain the origins of UTeach and how the program works.

State of Tomorrow “takes to the water” for our two newest profiles of university researchers and problem-solvers in Texas. Lee Fuiman, director of the UT Austin Marine Science Institute in Port Aransas, lays out some of the critical issues facing the Gulf of Mexico and what’s being done to overcome them. Meanwhile, at the River Systems Institute at Texas State University-San Marcos, director Andrew Sansom describes how to preserve and protect those waterways from stresses that are inevitable in the future.

We encourage you to check out the profiles of two more higher education innovators who are working diligently to improve our quality of life. Dr. Stanley M. Lemon of UT Medical Branch – Galveston explains why the prestigious new Galveston National Laboratory is a crucial factor in the fight against emerging infectious diseases. And Dr. Roger Rosenberg of UT Southwestern Medical Center – Dallas reveals why he is optimistic that neurologists are closing in on viable treatments for Alzheimer’s disease.

Recently, according to the San Antonio Business Journal, University of Texas at San Antonio’s dean of the College of the Sciences George Perry has been named one of the world’s top 10 Alzheimer’s researchers.

In Aging with Dignity, researchers take us into some of higher education’s most innovative laboratories, where scientists and clinicians are tracking the intricacies of aging bodies and minds. Can we slow the crippling disabilities of age? Cure or better manage the cruel losses of Alzheimer’s and other dementias? Patients and family members with little time and lingering hopes talk about a future facing a huge generation of baby boomers and those who will care for them.

In this interview, Dr. Roger Rosenberg discusses his research at UT Southwestern Medical School in Dallas and how they hope to slow the aging process long enough to find a cure for Alzheimer’s disease.

With President Obama’s lift of the restrictions on federal funding for research with embryonic stem-cells, there have been many headlines concerning stem-cell research on a national level, but what is going on here in Texas?

In Rebuilding the Heart, James T. Willerson, M.D. and Emerson C. Perin, M.D. share the story of stem cell research occurring at The University of Texas Health Science Center at Houston that hopes to design a cure for failing hearts. By using 3D mapping and adult stem-cells, these Texas researchers are making a new path to cure heart disease.

“When one has a heart attack, a blood clot forms in a specific artery in the heart obstructing it, depriving a region of the heart of blood flow and that part of the heart dies. And with repeated heart attacks, the heart enlarges and becomes basketball shaped and rather than contracting vigorously, it may just quiver at the top. When that occurs, the patient has no energy, cannot walk any distance without becoming very short of breath, and about half of them are dead in 3 to 4 years,” Willerson explains. “Within 2 months, some who could not walk 20 feet without getting short of breath previously were now jogging on the beach.”

Travel around Texas with State of Tomorrow™ and meet higher education researchers working hard for your, well, tomorrow. They’re striving to improve our future with groundbreaking research in such areas as treatment of cancer and of emerging infectious diseases; training better math and science teachers; maximizing available energy resources while searching for viable alternatives; and expanding our understanding of genomes (DNA) so we can live longer.

Meet Ritsuko Komaki and James D. Cox, who were instrumental in bringing the Proton Therapy Center to UT M. D. Anderson Cancer Center. Proton therapy — which has been described as more like a form of surgery than a form of radiation — is the most precise cancer treatment available, with the fewest side effects, making it a primary cancer-fighter of the future.

Explore the ultra-secure Galveston National Laboratory and the Robert E. Shope, M.D. Laboratory at UT Medical Branch – Galveston, where C. J. Peters leads a team of scientists studying the most exotic, dangerous and contagious viral diseases known to man. They’re looking for vaccines and cures for the likes of Rift Valley fever, SARS and the Marburg virus — both to protect people around the world from the diseases in their natural form and to defend against their possible use as bioterrorist weapons of mass destruction.

Hear why Dr. Scott W. Tinker, director of the UT Austin Bureau of Economic Geology, asserts that so-called “energy independence” is unattainable in a world where nations are growing more, not less, interdependent. But with the proper planning, preparation and compromising, “energy security,” a much more reasonable goal, is well within our reach.

Listen to an extended interview with Dr. Steven Austad, professor of cellular and structural biology at the UT Health Science Center – San Antonio, about what he’s doing to extend the lives of humans.

Learn why UTeach at UT Austin has become a national model for training more effective math, science and computer science teachers who, in turn, will attract more students to these crucial fields.

And see how students at the UT Health Science Center – Houston “practice medicine” on complex, computer-driven human patient simulators.

Together, these men and women help assure a better future for us all.

If you’ve watched State of Tomorrow™, you already know higher education means more than an advanced degree. It means groundbreaking cancer treatments, new sources of energy to power our world, educational programs that help our next generation and research that keeps us safe today and tomorrow.

It also means people. In fact, that’s what makes State of Tomorrow so powerful — the people we meet in the lab, in the classroom or in the field. We hear their stories — and stories from people whose lives are forever changed by university faculty and researchers.

In 21st Century Cancer Care, Dr. James Cox tells us “Academic environments lead to creativity. They put an emphasis on bringing new things to patients — to science in general. We can push the envelope and each other to succeed in ways that haven’t been done before.”

‘Ways that haven’t been done before.’ That is the heart of innovation — to rethink, to improve, to imagine. That’s exactly what we’ve tried to do on this new State of Tomorrow site. We’ve added videos that allow you to dig deeper into topics. We’ve caught up with scientists and researchers from the series and highlighted their progress with in-depth features. We’ve made sure everyone can watch the series online. And, we’ve made sure every educator has access to the State of Tomorrow teaching tools.

Our main goal, after all, is to get the word out about public higher education. So that every time you think about healthcare or environmental quality or national security, you think about higher education — and every time you think about higher ed, you think about people who are working to make our communities stronger, safer, healthier and prosperous.

Follow

Get every new post delivered to your Inbox.